

DATA SHEET

Yttria Stabilised Zirconia

3mol% Yttria-Stabilised Zirconia for Ceramic Injection Moulding applications

© 2018 Technical Ceramics, a business within Morgan Advanced Materials

Description

A very high purity zirconia-based material, partially stabilised with yttria. Contains 99% ZrO_2 , Y_2O_3 and HfO_2 in combination.

Prime Features

- Clinical use since 1990
- Highest levels of QA and traceability
- Very high mechanical strength
- Ultra fine grain
- Very dense and non-porous
- Excellent wear resistance
- Excellent corrosion resistance
- High impact resistance and toughness.

Typical Applications

Components for a range of medical (meets requirements of ISO 13356), analytical and industrial applications

Morgan Production Capabilities

- Ceramic injection moulding of highly complex geometries
- High precision, very thin wall extrusions
- Volume capability; prototype, batch through to very high (millions of components)
- A range of secondary processing to meet surface finish and flatness requirements

Please note that all values quoted are based on test pieces and may vary according to component design. These values are not guaranteed in anyway whatsoever and should only be treated as indicative and for guidance only. 22/02/18

Specifications

- Quality Assurance to ISO 9001
- Meets requirements of ISO 13356

Physical Properties

Colour	White
Density, g/cm ³	> 6.0
Porosity (apparent), % nominal	0 (fully dense)
Rockwell Hardness (R45N)	87
Fracture Toughness, MPa.m ^½	10
Flexural Strength (4-point), MPa @ 20C	> 800
Grain Size, µm	0.2
Young's Modulus E, GPa @ 20 °C	220
Shear Modulus G, GPa @ 20 °C	
Poisson's Ratio v	
Thermal Properties	
Thermal Conductivity, W/m.K@20C	2.9
Thermal Expansion coefficient 10 ⁻⁶ @ 20-10	0.0 °C 9.0
Thermal Shock Resistance (R_1) $\Delta T/C$	400
Thermal Shock Resistance (R ₂) W/m	891
Specific Heat J/kg.K	610
Electrical Properties	
Permittivity, 20C 1MHz	
20C 10 GHz	33
Dielectric Loss @ 1MHz, tan δ 10 ⁻⁴	
@ 10 GHz, tan δ 10 ⁻⁴	
Dielectric Strength, kV/mm	
Volume Resistivity, ohm.cm @ 100 °C	>1010
300 °C	
° 000	

www.morganadvancedmaterials.com

Morgan Technical Ceramics Ltd Registered in England and Wales at Morgan Drive, Stourport-on-Severn, Worcestershire, DY13 8DW UK Company 262938